
Parser Theory

Drikus Kleefsman
mail:project@.drikus.net

Januari 4, 2014

A short introduction to the use of TinyPG1.3. Version 1.0

1 Introduction

TinyPG is a parser generator in C#, written by Herre Kuijpers. The project can be found on
Codeplex (http://www.codeproject.com/Articles/28294/a-Tiny-Parser-Generator-v1-2). This
article is a short introduction on the product, on how it it works and on how to use it. For the
first sections of this article only the executable files are needed. Until you arrive at section 4
may be it is best to download only the executables and not the sourcecode.

The parser comes with an article by Herre in which he lists the main strengths of TinyPG.
He says it is a powerful tiny utility in which to define the grammar for a new compiler, that

• provides syntax and semantics checking of the grammar

• generates a tiny set of sources for the parser/scanner/parsetree (just three .cs or .vb files
without any external dependencies)

• allows each generated file to remain clearly human readable, and debuggable with Visual
Studio(!)

• includes an expression evaluation tool that generates a traversable parse tree

• has the option to include C# code blocks inside the grammar, adding immediate func-
tionality with just a few lines of code

• includes a tiny regular expression tool

• tries to keep things as simple and tiny as possible

In section 2 the syntax of (E)BNF is introduced. In section 3 we look at the simple example
of an Expression evaluator that shows how to use TinyPG and in section 4 we look at the source
code of TinyPG itself.

A very nice introduction on the theory of parsing can be found in ”Gram-
mars and parsing with C# 2.0”, by Peter Sestoft and Ken Friis Larsen (SL-06)
(http://www.itu.dk/people/kfl/parsernotes.pdf). Also Chapter 5 from the classic ”Algorithms
+ Data structures = Programs” by Niklaus Wirth (W-76) (however, not on the internet) is a
good introduction.

1

2 Syntax

2.1 Production rules

A text in a languague is a string of terminal symbols. But not every sequence of terminal
symbols is correct in a language. The text has to follow certain syntax rules that together
form the grammar of the language. To give the syntax rules we introduce the concept of non-
terminals. As can be read in SL-06 the grammar of a language is given by G = (T,N,R,S),
where T is a set of terminals, N a set of nonterminals, R a set of rules, and S a starting symbol
S. Starting from S all possible sequences of terminals are given by the rules of the grammar.
To state the rules we use the language E(NBF). We will assume that the rules are context free:
every rule will have the following form A = f1|...|fn , where A ∈ N is a nonterminal and each
alternative fi is a sequence ei1ei2...eim where each eij is a terminal or nonterminal symbol. And
as a special sequence we have the empty sequence written as Λ.

2.2 Examples of rules

2.2.1 Example 1

The first two examples are from (W-76). In this first example the scentences of a natural
language are restricted by the following three production rules. I am using a BNF convention
to write non-terminals within < ... > brackets.

< Scentence > ::=< Subject >< Predicate >

< Subject > ::= cats|dogs
< Predicate > ::= sleep|eat

The terminals are cats, dogs, sleep and eat. An example of a scentence that can be formed
with these rules is ”cats eat”.

2.2.2 Example 2

In this example we have a recursive production rule and this gives rise to an infinity of possible
scentences.

< S > ::= x < A >

< A > ::= z|y < A >

An example of a scentence that can be formed with these rules is ”xyyyyyyz”, but there is
of course no limit on the number of y’s between the opening ’x’ and closing ’z’.

2.2.3 Example 3

In this example we see that optional elements can be expressed using the empty sequence Λ.

< A > ::=< Body > | Λ

< Body > ::= ...

When the non-terminal < A > is evaluated one has the choice between the non-terminal
< Body > or skipping this non-terminal.

2

2.2.4 Example 4

In this example we see that repetitive elements can be expressed using the empty sequence Λ.

< A > ::=< Body >< A > | Λ

< Body > ::= ...

When the non-terminal < A > is evaluated one has the choice between once more choosing
the non-terminal < Body > or skipping this non-terminal.

2.3 EBNF and Syntax diagrams

BNF is a very lowlevel syntax. Extensions have been introduced, one of them being EBNF
(Extended BNF). Two important extensions in EBNF are the use of brackets [...] to enclose an
optional element and the use of {...} to enclose a repetitive (0, 1 ... ∞ times) element.

TinyPG uses a form of EBNF. There is no special symbol for the empty sequence and Start
is a reserved symbol for the Start non-terminal. It uses the following predefined symbols in the
production rules for non-terminals:

• * - the symbol or sub-rule can occur 0 or more times.

• + - the symbol or sub-rule can occur 1 or more times.

• ? - the symbol or sub-rule can occur 0 or 1 time.

• | - this defines a choice between two sub rules.

• whitespace - the symbol or sub-rules must occur after each other.

• (...) - allows definition of a sub-rule.

EBNF is a language and as such has also its own syntax rules. The development of TinyPG
was started with the statement of the syntax of EBNF, using EBNF itself as language. It gives
a precise description of the allowable content for the input of TinyPG. This description can be
found in the file ”BNFGrammar 1.3.tpg”.

2.3.1 Example 5

This example is found at the end of file ”BNFGrammar 1.3.tpg” translated to the syntax used
in this text. The terminals for the parser are in capital letters. A side note: TinyPG uses ”->”
instead of ”::=”, does not use < ... > brackets and a rule always ends in a ”;”.

Rule ::= STRING | < Subrule >

Subrule ::=< ConcatRule > (PIPE < ConcatRule >)∗
ConcatRule ::=< Symbol > +

Symbol ::= (IDENTIFIER | (BRACKETOPEN < Subrule > BRACKETCLOSE))

UNARY OPER?

3

As usual in this software we have a scanner (also called a lexer) and a parser. The scanner
(lexer) reads the terminal symbols and passes them to the parser. In the same file the definition
of the terminal symbols can be found. The definition of the terminals used in the example are:

BRACKETOPEN ::= @”\(”
BRACKETCLOSE ::= @”\)”

PIPE ::= @”\|”
UNARY OPER ::= @”(\ ∗ |\+ |\?)”

IDENTIFIER ::= @”[a− zA− Z][a− zA− Z0− 9] ∗ ”

STRING ::= @”@?\””(\\””\””|[\””]) ∗ \”””

In the right hand sides of the terminal definitions there are of C# strings that are used in
Microsofts implementation of regular expressions. In the C# language the @ at the beginning
of the string tells the compiler that everyting between the openig and closing quotation marks
must stay uninterpreted. The reserved symbols ”*”, ”+”, ”?”, ”(” and ”)” have a similar
meaning as in EBNF. The expressions between ”[” and ”]” are expressions that tell what letter
is accepteble. The regular expression ”[a-zA-Z]” represents one char that can be a lowercase
letter, an uppercase letter or an underscore. And the regular expression IDENTIFIER := [a-
zA-Z][a-zA-Z0-9]* means that an identifier can start with an alphabetic symbol followed by an
arbitrary number of alphabetic or decimal symbols. The scanner of TinyPG makes use of the
Microsoft regular expression classes to find Terminals in the input text. For more on Microsoft
regular expressions see (MS-14-RE).

The complete content of the file ”BNFGrammar 1.3.tpg” is as follows:

// @TinyPG - a Tiny Parser Generator v1.3

// Copyright Herre Kuijpers 2008-2012

// this grammar describes the BNF notation

// Incorporated revisions by William A. McKee Aug. 14, 2008

<% @TinyPG Namespace="TinyPG" %>

// Terminals:

BRACKETOPEN -> @"\(";

BRACKETCLOSE -> @"\)";

CODEBLOCK -> @"\{[^\}]*\}([^};][^}]*\}+)*;";

COMMA -> @",";

SQUAREOPEN -> @"\[";

SQUARECLOSE -> @"\]";

ASSIGN -> @"=";

PIPE -> @"\|";

SEMICOLON -> @";";

UNARYOPER -> @"(*|\+|\?)";

IDENTIFIER -> @"[a-zA-Z_][a-zA-Z0-9_]*";

INTEGER -> @"[0-9]+";

DOUBLE -> @"[0-9]*\.[0-9]+";

4

HEX -> @"(0x[0-9a-fA-F]{6})";

ARROW -> @"->";

DIRECTIVEOPEN -> @"<%\s*@";

DIRECTIVECLOSE -> @"%>";

EOF -> @"^$";

STRING -> @"@?\""(\""\""|[^\""])*\""";

[Skip]

WHITESPACE -> @"\s+";

[Skip]

COMMENTLINE -> @"//[^\n]*\n?";

[Skip]

COMMENTBLOCK -> @"/*[^*]**+(?:[^/*][^*]**+)*/";

// Production lines LL(1):

Start -> Directive* ExtProduction* EOF;

Directive -> DIRECTIVEOPEN IDENTIFIER NameValue* DIRECTIVECLOSE;

NameValue -> IDENTIFIER ASSIGN STRING;

ExtProduction -> Attribute* Production;

Attribute -> SQUAREOPEN IDENTIFIER (BRACKETOPEN Params? BRACKETCLOSE)? SQUARECLOSE;

Params -> Param (COMMA Param)*;

Param -> INTEGER | DOUBLE | STRING | HEX;

Production -> IDENTIFIER ARROW Rule (CODEBLOCK | SEMICOLON);

Rule -> STRING | Subrule;

Subrule -> ConcatRule (PIPE ConcatRule)* ;

ConcatRule -> Symbol+;

Symbol -> (IDENTIFIER | (BRACKETOPEN Subrule BRACKETCLOSE)) UNARYOPER?;

A nice graphical representation for ENBF syntax rules is with syntax diagrams. In (W-76)
examples of syntax diagrams are given e.g. for the language PL/0. Latex has the rail package
for writing these syntax diagrams.

3 Example of its use

The article of Herre already has an example of its use. In it a numeric expression evaluator
is defined. The grammar of this expression evaluator is defined in the file ”Examples/Simple
expression1.tpg” as

//Terminals:

NUMBER -> @"[0-9]+";

PLUSMINUS -> @"(\+|-)";

MULTDIV -> @"*|/";

BROPEN -> @"\(";

BRCLOSE -> @"\)";

EOF -> @"^$";

5

[Skip] WHITESPACE -> @"\s+";

Start -> (AddExpr)? EOF;

AddExpr -> MultExpr (PLUSMINUS MultExpr)*

MultExpr -> Atom (MULTDIV Atom)*;

Atom -> NUMBER | BROPEN AddExpr BRCLOSE;

In the file ”Examples/Simple expression2.tpg” this syntax is augmented with code blocks
to do the evaluation of in input expression into a number. For instance the AddExpr has the
following codeblock

AddExpr -> MultExpr (PLUSMINUS MultExpr)*

{

int Value = Convert.ToInt32($MultExpr);

int i = 1;

while ($MultExpr[i] != null)

{

string sign = $PLUSMINUS[i-1].ToString();

if (sign == "+")

Value += Convert.ToInt32($MultExpr[i++]);

else

Value -= Convert.ToInt32($MultExpr[i++]);

}

return Value;

};

This code tells us how to evaluate the Value of an AddExpr. We will see the C# code of
this later on.

When running the TinyPG you can import the example file (use the version ”Exam-
ples/Simple expression2.tpg”) and then press F6 (or select menu option Build — Generate).
The result of the run are three important files with names Scanner.cs, Parser.cs and Parse-
Tree.cs. When using ”Examples/Simple expression2.tpg” one can press F5 (or select menu
option Build — Generate and Run) to evaluate values of expressions (use the Evaluation eval-
uator window for the input of expresions) that follow the given syntax rules like 5+7*(80-4).
Results (and errors) are reported in the Output window (537 in this example).

3.1 Contents of generated files

The generated files from ”Examples/Simple expression2.tpg” can be used to evaluate expres-
sions like 5+7*(80-4). Create a project that contains the generated file Scanner.cs, Parser.cs
and ParseTree.cs and add to it the following Program file:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

6

using TinyPG;

namespace TestParser

{

class Program

{

static void Main(string[] args)

{

Parser parser = new Parser(new Scanner());

ParseTree parseTree = parser.Parse("5+7*(80-4)");

System.Console.WriteLine("5+7*(80-4)= " + parseTree.Eval());

System.Console.ReadLine();

}

}

}

When executing the program the result in the output window will be 5+7*(80-4)= 537.
The way the parser does its work is simpel. The parser always knows what the possible choices
of terminals are after the current one. It asks the lexer to read the next terminal. The parser
starts with the method ParseStart for the Start production line of the syntax for an expression.
In the method it creates a Start token with

ParseNode node = parent.CreateNode(scanner.GetToken(TokenType.Start), "Start");

because this token will be the first to be added to the syntaxtree. After that the parser asks
the lexer to read ahead the next terminal.

tok = scanner.LookAhead(TokenType.NUMBER, TokenType.BROPEN);

The scanner knows that after the start symbol the next terminal has to be one of three,
a NUMBER, a BROPEN or a EOF. This follows from the production lines in the sytax of
expressions. After the start terminal there have to follow zero or more AddExpr non-terminals
followed by an EOF terminal. And an AddExpr has to start with an Atom, which starts with
a NUMBER or a BROPEN. If it starts with a NUMBER or a BROPEN the parsing continues
in the method ParseAddExpr(node) and else we have to have the ending EOF terminal of the
production line for Start. Of course the explanation of the ParseAddExpr(node) method can
be found looking at the production line for the AddExpr. In the process of parsing the found
terminals are added to the syntaxtree.

The codeblocks added to the syntax productionlines can be found back in the methods
EvalStart, EvalAddExpr, EvalMultExpr and EvalAtom of parsetree. For example the code of
EvalAddExpr is as follows

protected virtual object EvalAddExpr(ParseTree tree, params object[] paramlist)

{

int Value = Convert.ToInt32(this.GetValue(tree, TokenType.MultExpr, 0));

int i = 1;

7

while (this.GetValue(tree, TokenType.MultExpr, i) != null)

{

string sign = this.GetValue(tree, TokenType.PLUSMINUS, i-1).ToString();

if (sign == "+")

Value += Convert.ToInt32(this.GetValue(tree, TokenType.MultExpr, i++));

else

Value -= Convert.ToInt32(this.GetValue(tree, TokenType.MultExpr, i++));

}

return Value;

}

Together with the methods GetValue and Eval of the parsetree the Eval of the parsetree
is done. In the produced code for the codeblock ”this” is an AddExpr non terminal. The
syntax for an AddExpr is: AddExpr ->MultExpr (PLUSMINUS MultExpr)*, so to evaluate a
AddExpr one has to evaluate the first MultExpr and after that a number of (PPLUSMINUS
MultExpr), which is done in the while-loop. Look at how the first MultExpr in the codeblock
is translated to MultExpr[0] (index=0) in the C# code (tree, TokenType.MultExpr, 0).

Of course we can use a parsetree without codeblocks. Then we traverse the parsetree and
at moments of our choosing we produce the things we want. As an example, we might use as
input to TinyPG the syntax for a C header file and generate the parser files for this syntax.
Then we parse a C header file with the generated parser to produce the parsetree. Traversing
this tree we can for instance translate a C function prototype to a C# method whenever the
node is of type FunctionNode.

4 The source code (or what Herre did)

Now let us look at the sourcecode of TinyPG. The sourcecode can be downloaded from the
Codeplex site. Our main interest is in the code found in the subdirectory ”Compiler”.

To be able to understand what is going on read the whole article (SL-06). In summary,
TinyPG is a LL(1) parser generator. It reads a syntax and produces a top-down LL(1) parser
for that syntax. The generated parser tries to find a derivation of the Start symbol that matches
the input string that is parsed. It does this by reading symbols from the input string from left to
right (the meaning of the first ’L’ in LL(1)) and in the process of finding a match the Leftmost
nonterminal in the derivation tree is replaced (the meaning of the second ’L’ in LL(1)) trying
to find a match with 1 symbol from the input string (the ’1’ in LL(1)). In chapter 3 of (SL-06)
it is shown that not every syntax is acceptable for LL(1) parsing. The syntax should be written
so that it is always possible to choose between alternatives. If we have a nonterminal A written
as A → f1|f2|...fn then the choice between the alternatives must be made based on only one
non-terminal t that is at the head of the input stream. If the choice cannot be made we do not
have a good syntax. We will choose option fi if this option fi can start with symbol t or if this
option can be empty and the symbol A can be followed by s. For the latter we have to look
in all the other derivation rules to find the symbol A on the righthandside and the symbols
following the symbol A. The set of terminals an option fi can start with is called First(fi).
The set of a terminals a non-terminal A can follow is called Follow(A). How to construct these
sets, see (SL-06).

To write a parser generator for a random LL(1) syntax like TinyPG a number of steps
are needed. The first step is to read the syntax and analyze it. Reading the syntax actually

8

means parsing what you read and store it in a syntaxtree to analyze it there. This text will be
parsed and put in a tree structure. Let us call this stucture, like Herre did, a Grammartree. It
contains the grammar for which to produce a parser. After translating the grammartree to a
more suitable structure (a kind of abstract grammartree and let us call this structure, like Herre
did, the Grammar) that is the basis for generating the parser for the grammar. That generated
parser also has to read in a file and translate it to a syntaxtree. Let us call this structure
Parsetree. So, the whole process is Input → GrammarTree → Grammar → Parsercode →
compiledParser → Parsetree

4.1 What happens, an example

Let us follow this process in our example of the expression evaluator where the production rules
were as follows:

//Terminals:

NUMBER -> @"[0-9]+";

PLUSMINUS -> @"(\+|-)";

MULTDIV -> @"*|/";

BROPEN -> @"\(";

BRCLOSE -> @"\)";

EOF -> @"^$";

[Skip] WHITESPACE -> @"\s+";

Start -> (AddExpr)? EOF;

AddExpr -> MultExpr (PLUSMINUS MultExpr)* | (MultExpr)*;

MultExpr -> Atom (MULTDIV Atom)*;

Atom -> NUMBER | BROPEN AddExpr BRCLOSE;

But wait, the production line for AddExpr has been changed! We added ”— (MultExpr)*;”
to the line!. It is production line for AddExpr that will have our attention in what follows and
we made it a little more complex and even totally unacceptable because because now we have
two options in the line and both start with the symbol ”MultExpr”. Let us see what happens.

The parser that reads this file knows that he has to expect that the contents of the production
lines follow the EBNF syntax given in the file ”BNFGrammar 1.3.tpg” (forgetting here the
terminal symbols and directives):

Start -> ExtProduction* EOF;

ExtProduction -> Attribute* Production;

Attribute -> SQUAREOPEN IDENTIFIER (BRACKETOPEN Params? BRACKETCLOSE)? SQUARECLOSE;

Params -> Param (COMMA Param)*;

Param -> INTEGER | DOUBLE | STRING | HEX;

Production -> IDENTIFIER ARROW Rule (CODEBLOCK | SEMICOLON);

Rule -> STRING | Subrule;

Subrule -> ConcatRule (PIPE ConcatRule)* ;

ConcatRule -> Symbol+;

Symbol -> (IDENTIFIER | (BRACKETOPEN Subrule BRACKETCLOSE)) UNARYOPER?;

9

The parser (source can be found in the subdirecory Compiler) produces a GrammarTree. A
small part of the tree is represented in the following tree (part of the production rule AddExpr
->MultExpr (PLUSMINUS MultExpr)* — (MultExpr)*;.

Tree

. . . ExtProduction

Production

IDENTIFIER

AddExpr

ARROW

->

RULE

Subrule

ConcatRule

Symbol

IDENTIFIER

MultExpr

Symbol

BRACKETOPEN

(

Subrule

. . .

BRACKETCLOSE

)

UNARYOP

*

PIPE ConcatRule

SEMICOLON

;

. . .

The topnode of the tree is the tree itself and to this node are added nodes that contain Tokens
of type TokenType.ExtProduction and a node with a Token of TokenType.EOF. There are many
nodes directly under the start node, one for each production line but also for each terminal
line. All those lines in the file with the expression-syntax are seen by the parser as examples of
an ExtProduction. This parser simply thinks let me find as many ExtProductions and finally a
EOF and my job is done. In the same way in finding an ExProduction it tries to find a number
of Attributes followed by a Production. Because in the example-file there are no attributes only
Production nodes (a GrammarNode that contain a Token of type TokenType.Production) are
added to the tree. In the figure we see how our AddExpr is stored in the ENBF tree and that

10

the source text is found back as leaves leaves of this tree.
After the GrammarTree is built the tree gets translated to a Grammar. This is done by

calling the Eval() method of the tree and this will call the Eval on the nodes resursivly. Exept
for the code for the Eval function itself which can be found in the file ParseTree all the code can
be found in GrammarTree.cs. ParseTree.Eval(treeNode,) uses the token in tree node to call one
of the EvalXXX functions in GrammarTree.cs. Beginning with EvalStart(treeNode, objecLlist).
This method creates the Grammar object and this object is passed to other functions using
the objectlist. After that it adds information about its nodes to the Grammar and finally it
calls the Eval function on all its nodes for recursion, which calls one of the other EvalXXX
functions in GrammarTree. The reason for creating the (so called abstract tree) Grammar is
that the Grammartree, although it has all the information needed, is not the most elegant
structure to produce the code for the parser that will be generated. In Grammar we will create
a better structure. A good example for this is in finding the Nonterminal rules with the regular
expressions. In the GramarTree these are just ExtProductions and it is not easy to see why
some are ExtProductions for Terminals and some for NonTerminals. In the method EvalStart
the solution is given with the following code for a node of type ExtProduction:

if (n.Nodes[n.Nodes.Count - 1].Nodes[2].Nodes[0].Token.Type == TokenType.STRING)

It means look in the last of the nodes of an ExtProduction (ExtProduction ->Attribute*
Production;) and then it its third node (Production ->IDENTIFIER ARROW Rule (CODE-
BLOCK — SEMICOLON);) which is the Rule node, and then in its first node (Rule ->STRING
— Subrule;), if that has a token of TokenType.STRING) ... then we have a Terminal produc-
tion. In the Grammar object it is added to the list of Symbol. Also if attributes are present in
the ExtProduction they are now added as children to the TerminalSymbol. After EvalStart has
done its work all symbols are added to the Grammar (the lefthand sides of the ExtProductions).
In the other methods to the symbols the Rules are added (the righthandsides). After all the
evaluations have been done the Grammar object for our Expression evaluator has 1 directive,
1 skipsymbol (whitespace) and 11 symbols (7 TerminalSYmbols and 4 NonTerminalSymbols).
A Terminal has a Name (for instance NUMBER) and an Expression (for NUMBER this
is @”[0-9]*”. A NonTerminalSymbol contains a Rule structure that is a translation of the
treestructure in a GrammarTree (a Rule can contain zero or more Rules) and here things are
simplified. A Rule has a type and it is immediatly clear if a rule is an optional element. A part
of the rule structure for our example production rule AddExpr ->MultExpr (PLUSMINUS
MultExpr)* — (MultExpr)* ; is now represented by

11

TerminalSymbol

Name

AddExpr

Rules

Rule type=Choice

Rules

Rule type=Concat

Rules

. . .

Rule type=ZeroOrMore

Rules

Rule type=NonTerminal

Symbol Name=MultExpr

After calling the Eval() on the GrammarTree one can call Grammar.Preprocess(). In it
a call is made to DetermineFirsts(). Of course DetermineFirsts() uses the Grammar struc-
ture to find out what the First symbols are for each rule. NonTerminalSymbols have a field
FirstTerminals that is filled with the possible alternatives. For instance for the NonTermi-
nal AddExpr in our example the field FirstTerminals is filled with the TerminalSymbol values
NUMBER and BROPEN and for the NonTerminal Start the field is filled with the Terminal-
Symbol values NUMBER, BROPEN and EOF. The FirstTerminals are however not used as a
check that the syntax of the given input is correct. The syntax that was used in our example
AddExpr−>MultExpr(PLUSMINUSMultExpr) ∗ | (MultExpr)∗; gave no compiler warn-
ings although it is obvious that a syntax that starts with the same symbol in the options (here
MultExpr) can give problems. However the produced Parser code does give rise to errors the
moment it gets compiled. The code that is generated looks like this:

private void ParseAddExpr(ParseNode parent)

{

Token tok;

ParseNode n;

ParseNode node = parent.CreateNode(scanner.GetToken(TokenType.AddExpr), "AddExpr");

parent.Nodes.Add(node);

tok = scanner.LookAhead(TokenType.NUMBER, TokenType.BROPEN);

switch (tok.Type)

{

case TokenType.NUMBER:

case TokenType.BROPEN:

ParseMultExpr(node);

tok = scanner.LookAhead(TokenType.PLUSMINUS);

12

while (tok.Type == TokenType.PLUSMINUS)

{

...

}

break;

case TokenType.NUMBER:

case TokenType.BROPEN:

tok = scanner.LookAhead(TokenType.NUMBER, TokenType.BROPEN);

while (tok.Type == TokenType.NUMBER

|| tok.Type == TokenType.BROPEN)

{

ParseMultExpr(node);

tok = scanner.LookAhead(TokenType.NUMBER, TokenType.BROPEN);

}

break;

default:

tree.Errors.Add(...);

break;

}

parent.Token.UpdateRange(node.Token);

}

As can be seen, in TinyPG the code follows the syntax (AddExpr ->MultExpr (PLUSMI-
NUS MultExpr)* | (MultExpr)*;) and the FirstTerminals are used each time a NonTerminal is
on the righthandside of the productionline for producing case statements. But because the Mul-
tExpr is in the head of the first option as well in the head of the next option of the productionline
we have twice the case statements ”case TokenType.NUMBER: case TokenType.BROPEN:” in
the loop giving an obvious compile error.

The production of the code can get started after that the Grammar knows its FirstTerminals.
The parser is generated with a call to Compiler.Compile(Grammar) which calls BuildCode that
will use the right generator (the default is the C# generator) to build the parser code.

4.2 How to create a Parser generator

One of the nice things of the EBNF language is that it is possible to express it’s syntax in
EBNF itself. This is done in the file ”BNFGrammar 1.3.tpg”. So, if you have a tool like
TinyPG then it can be used to generate a parser for EBNF itself. If you feed TinyPG with the
file ”BNFGrammar 1.3.tpg” you will see this happening and the generated Parser.cs is identical
to the Parser.cs used by TinyPG. It seems a good reason not to write that code by hand. Write
the code that cannot be generated. Write the code for GrammarTree, Grammar and the code
for the generation of the parser. Create a Grammar object for the syntax in ”BNFGrammar
1.3.tpg” and generate your parser and scanner. It will take quit some time I guess to write all
the code for TinyPG.

13

5 The rest of the code

Apart from creating all the code for a generator there is more to be done when programming
TinyPG. What has been done as well is

• A user interface is made. Use is made of Floaty objects for windows.

• A special window is made for evaluating Microsoft Regular expressions.

• Code for text-highlighting is made.

• Evaluting Codeblocks is made possible. With a Microsoft CodeProvider object the gen-
erated treeview code can be compiled to executable.

6 License

Herre’s article, along with any associated source code and files, is licensed under The Code
Project Open License (CPOL). To give an impression of the CPOL licence, here is its Pramble

Preamble
This License governs Your use of the Work. This License is intended to allow developers to

use the Source Code and Executable Files provided as part of the Work in any application in
any form.

The main points subject to the terms of the License are:

• Source Code and Executable Files can be used in commercial applications;

• Source Code and Executable Files can be redistributed; and

• Source Code can be modified to create derivative works.

• No claim of suitability, guarantee, or any warranty whatsoever is provided. The software
is provided ”as-is”.

• The Article(s) accompanying the Work may not be distributed or republished without
the Author’s consent

This License is entered between You, the individual or other entity reading or otherwise
making use of the Work licensed pursuant to this License and the individual or other entity
which offers the Work under the terms of this License (”Author”).

7 More

7.1 More on the internet

• (SL-06) ”Grammars and parsing with C# 2.0”, by Peter Sestoft and Ken Friis Larsen;
http://www.itu.dk/people/kfl/parsernotes.pdf

• (MS-14-RE) ”Regular Expression Language - Quick Reference”, MSDN Library,
http://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

14

7.2 More in books

• (W-76) ”Algorithms + Data structures = Programs”, by Niklaus Wirth; ISBN 0-13-
022418-9

15

	Introduction
	Syntax
	Production rules
	Examples of rules
	Example 1
	Example 2
	Example 3
	Example 4

	EBNF and Syntax diagrams
	Example 5

	Example of its use
	Contents of generated files

	The source code (or what Herre did)
	What happens, an example
	How to create a Parser generator

	The rest of the code
	License
	More
	More on the internet
	More in books

